Перевод: со всех языков на русский

с русского на все языки

цикл передачи данных

  • 1 data cycle

    1. цикл передачи данных

     

    цикл передачи данных
    Часть цикла шины, во время которой данные передаются по шине интерфейса.
    [ ГОСТ Р 50304-92 ]

    Тематики

    • системы для сопряж. радиоэлектр. средств интерфейсные

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > data cycle

  • 2 in one transfer mode

    Универсальный англо-русский словарь > in one transfer mode

  • 3 mode

    1) способ; метод; режим ( работы), мода
    2) форма; тип; вид
    3) форма колебаний, вид колебаний

    in shaft mode — при установке детали в центрах, при установке обрабатываемой детали в центрах (напр. токарного станка)

    - 3D mode
    - acceleration mode
    - accept/reject mode
    - adapt mode
    - adaptive control mode
    - anticipation mode
    - approach mode
    - automatic mode of operation
    - automatic mode
    - automatic skinning mode
    - autoposition mode
    - batch mode
    - closed loop position mode
    - CNC mode
    - command mode
    - compliant mode
    - constant cutting speed mode
    - constant speed mode
    - continuous machine control mode
    - continuous mode
    - continuous path mode
    - contouring mode
    - control mode
    - conversational mode
    - creep mode
    - cruise mode
    - cubic mode
    - dash mode
    - deceleration mode
    - decentralized mode
    - dialog mode
    - DNC communication mode
    - DNC mode
    - dual-range cutting speed mode
    - dwell mode
    - eigen mode
    - emulation mode
    - extreme mode
    - failsafe mode
    - failure mode
    - feed-through mode
    - flexural nth mode
    - full program mode
    - hierarchical mode
    - horizontal mode
    - idle mode
    - interactive graphics mode
    - interactive mode
    - interrupt mode
    - iteration mode
    - jog mode
    - joystick mode
    - learn mode
    - machining mode
    - manual data input mode of operation
    - manual mode of operation
    - manual skinning mode
    - minimally manned mode
    - mirror image mode
    - mode of inspection
    - mode of operation
    - mode of servicing
    - mode of test
    - mode of vibration
    - natural mode
    - NC mode
    - off-line mode
    - one-off mode
    - one-step drilling mode
    - open loop mode
    - operating mode
    - operation mode
    - part manual mode
    - pass-through mode
    - peck-feed mode
    - playback mode
    - point-to-point path mode
    - ptp path mode
    - pulsed mode of laser
    - pulsed mode
    - question-and-answer mode
    - rapid traverse mode
    - read-in mode
    - replay mode
    - retract mode
    - rotary mode
    - rotation mode
    - run mode
    - sets-of-parts mode
    - setup mode
    - single block mode of operation
    - single block mode
    - single-cycle mode
    - skip mode
    - skip-feed drill mode
    - snap mode
    - solving mode
    - square mode
    - standalone mode
    - step-feed drilling mode
    - system mode
    - tape auto mode
    - tape mode
    - teach mode
    - teaching mode
    - track/touch mode
    - tracking mode
    - translation mode
    - translucent mode
    - traverse mode
    - unattended mode
    - unmanned mode
    - variable speed mode
    - vertical mode
    - vibration mode
    - vibrational mode
    - vibration-free mode
    - virtual call mode
    - zoom mode

    English-Russian dictionary of mechanical engineering and automation > mode

  • 4 frame

    1. эквипотенциальная рама
    2. шпангоут судна
    3. цикл временного объединения цифровых сигналов электросвязи
    4. цикл временного объединения цифровых сигналов данных
    5. фрейм
    6. рамка
    7. рама кресла-коляски
    8. рама (в строительной механике)
    9. рама (в санном спорте, бобслее)
    10. рама
    11. оправа защитных очков
    12. наличник
    13. масса (при заземлении)
    14. коробка (в строительстве)
    15. конструкция
    16. каркас держателя пьезоэлектрического резонатора
    17. каркас (рама)
    18. каркас (в строительстве)
    19. каркас (в стоечных шкафах)
    20. кадрик
    21. кадр средства отображения информации
    22. кадр данных
    23. кадр (в информационных технологиях)
    24. кадр

     

    кадр
    Изображение, фрагмент видеосигнала, либо интервал времени, соответствующие однократному обходу растра развертывающим элементом, который начинается и заканчивается в одной и той же точке.
    [ ГОСТ 21879-88]

    кадр

    Базовая единица телевизионного изображения. Последовательность кадров образует непрерывное ("живое") телевизионное изображение. Кадр образуется объединением телевизионных полей.
    [ http://datasheet.do.am/forum/22-4-1]

    кадр
    Единичное полное изображение. В формате чересстрочной развертки 2:1 стандартов RS-170 и CCIR кадр составляется из двух раздельных полей с 262,5 или 312,5 строками, чередующихся с частотой 60 или 50 Гц, что позволяет формировать полный кадр с частотой 30 или 25 Гц. В видеокамерах с функцией прогрессивной развертки каждый кадр разворачивается построчно и не чередуется. В большинстве случаев частота кадров составляет также 30 и 25 Гц.
    [ http://www.alltso.ru/publ/glossarij_setevoe_videonabljudenie_terminy/1-1-0-34]

    Тематики

    • телевидение, радиовещание, видео

    Обобщающие термины

    EN

     

    кадр
    рамка
    фрейм

    Применительно к передаче данных, кадр — единица данных канального уровня (L2). В сетях Ethernet размер кадра обычно составляет от нескольких десятков байт до 1,5 Кбайт; некоторые устройства позволяют работать с кадрами размером до 9 Кбайт.
    Элементы HTML, появившиеся в броузерах версий 3.0. Позволяют разделить страницу на несколько независимых окон и в каждом из них размещать свою собственную WEB-страничку. Возможна ссылка из одного окна в другое. Применяется в основном для организации постоянно находящихся на экране меню, в то время как в другом окне располагается непосредственно сама информация
    [http://www.webxpert.ru/slovar.html].

    Примеры сочетаний:
    frame grabber - плата захвата и ввода изображения, проф. фреймграббер - устройство оцифровки и ввода в память компьютера изображений с устройства видеоввода (видеокамеры, видеоплеера)
    frame rate - частота кадров видеоизображений.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

     

    кадр данных
    кадр

    Протокольный блок данных уровня звена данных
    [ ГОСТ 24402-88]
    [ ГОСТ 29099-91]
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Тематики

    Синонимы

    EN

     

    кадр средства отображения информации
    кадр

    Сформированное изображение для одновременного отображения информации на экране средства отображения информации.
    [ ГОСТ 27833-88]

    Тематики

    Синонимы

    EN

     

    кадрик
    Один кадрик на кинопленке или одно статичное изображение в видеозаписи
    [Юлия Максимова, http://anjellka.livejournal.com/91779.html]

    Тематики

    Обобщающие термины

    • режиссура, операторское мастерство

    EN

     

    каркас
    -
    [Интент]

    5354

    Рис. Legrand

    Тематики

    EN

     

    каркас
    Несущая стержневая конструкция, являющаяся остовом здания, сооружения или конструкции
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    EN

    DE

    FR

     

    каркас (рама)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    каркас держателя пьезоэлектрического резонатора
    каркас
    Часть держателя пьезоэлектрического резонатора, служащая для крепления пьезоэлемента или пьезоэлектрического вибратора.
    [ ГОСТ 18669-73]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    конструкция
    Устройство, взаимное расположение частей и состав машины, механизма или сооружения.
    [ http://sl3d.ru/o-slovare.html]

    Параллельные тексты EN-RU

    The new valve profile is design to ensure smooth and precise control at low capacities for improved part load performances.
    [Lennox]

    Вентиль новой конструкции обеспечивает плавное и точное регулирование при низкой производительности холодильного контура, что увеличивает его эффективность при неполной нагрузке.
    [Интент]


    Тематики

    EN

     

    коробка
    1. Неподвижная часть заполнения проёмов в виде замкнутой или незамкнутой рамы
    2. Остов прямоугольного здания с несущими наружными стенами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    EN

    DE

    FR

     

    масса (при заземлении)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    Тематики

    • электротехника, основные понятия

    EN

     

    наличник
    Декоративная планка, обрамляющая дверной или оконный проём
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    наличник
    Планки, которые закрывают дефекты соединения между коробом (дверной коробкой) и стеной. Материалы, из которых изготавливаются наличники - это дерево или пластик. Наличники бывают скругленные, фигурные, плоские, телескопические и на шпонке.
    [ http://doorss.ru/term.php]

    наличник
    Деревянные профильные планки, служащие для обрамления дверного проёма и для прикрытия щелей между коробкой и стеной. Наличники бывают плоские, скруглённые, фигурные, телескопические и на шпонке. Различны также их размеры и материалы отделки и изготовления.
    [ http://na-dveri.ru/polezno-znati/termini-i-opredeleniya.html]

    Тематики

    EN

    DE

    FR

     

    оправа защитных очков
    оправа

    Совокупность конструктивных элементов открытых защитных очков для удержания очковых стекол в требуемом при эксплуатации положении.
    [ ГОСТ 12.4.001-80]

    Тематики

    Синонимы

    EN

    DE

     

    рама
    Стержневая система, стержни которой  во всех или в некоторых узлах жестко  соединены между собой.
    [ http://www.isopromat.ru/sopromat/terms]

    Тематики

    • строительная механика, сопротивление материалов

    EN

     

    рама
    Деталь конструкции саней. Рама, как правило, изготавливается из легкого металла.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    frame
    Constructive part of a sled. The frame is usually made of a lightweight metal.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    • санный спорт, бобслей, скелетон

    EN

     

    рама
    Стержневая система, стержни которой во всех или в некоторых узлах жестко соединены между собой.
    Примечание. По аналогии с фермами различаются «плоские рамы» и «пространственные рамы».
    [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    Тематики

    • строительная механика, сопротивление материалов

    EN

    DE

    FR

     

    рама кресла-коляски
    Узел, служащий для соединения и размещения составных частей кресла-коляски.
    Примечание
    Сиденье, спинка, рама и т.д. могут представлять собой единое целое или состоять из нескольких частей.
    [ ГОСТ Р 50653-94 ИСО 6440-85]

    Тематики

    Обобщающие термины

    EN

    FR

     

    рамка
    Ндп. ободок
    Фиксируемая часть замка, закрепляемая на обеих смыкаемых сторонах кожгалантерейного изделия.
    [ ГОСТ 15470-70]

    Недопустимые, нерекомендуемые

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    фрейм
    Кадр данных, обычно фиксированного формата
    [ ГОСТ Р 52872-2007]

    фрейм

    Фрагмент web-страницы, чаще всего являющийся отдельным файлом.
    [ http://www.lexikon.ru/rekl/a_eng.html]

    Тематики

    EN

     

    цикл временного объединения цифровых сигналов данных
    цикл временного объединения
    Совокупность примыкающих друг к другу интервалов времени, отведенных для передачи цифровых сигналов данных, поступающих по нескольким направлениям, в которой каждому из объединяемых по времени сигналов выделен однозначно определяемый интервал времени.
    [ ГОСТ 17657-79 ]

    Тематики

    Обобщающие термины

    Синонимы

    EN

     

    цикл временного объединения цифровых сигналов электросвязи
    цикл
    Совокупность примыкающих друг к другу интервалов времени, отведенных для передачи цифровых сигналов электросвязи, поступающих от различных источников, в которой каждому из этих сигналов выделен определенный интервал времени, положение которого может быть определено однозначно.
    [ ГОСТ 22670-77]

    Тематики

    Синонимы

    EN

     

    шпангоут судна
    шпангоут
    Поперечная балка бортового перекрытия судна или ее продолжение по днищевому перекрытию на судах внутреннего плавания, катерах, яхтах.

    Поперечный разрез сухогрузного судна
    3277
    1 - планширь судна; 2 - стойка фальшборта; 3 - полоса ватервейса судна; 4 - рамный бимс; 5 - настил палубы судна; 6 - карлингс; 7 - продольная подпалубная балка судна; 8 - комингс люка судна; 9 - пиллеро судна; 10 - концевой бимс; 11 - стойка переборки судна; 12 - непроницаемая переборка корпуса судна; 13 - настил второго дна судна; 14 - вертикальный киль судна; 15 - горизонтальный киль судна; 16 - днищевой стрингер судна; 17 - наружная днищевая обшивка судна; 18 - флор; 19 - крайний междудонный лист судна; 20 - скуловой киль судна; 21 - скуловой пояс наружной обшивки судна; 22 - трюмный шпангоут судна; 23 - бимс; 24 - бортовая наружная обшивка судна; 25 - твиндечный шпангоут судна; 26 - бимсовая кница; 27 - ширстрек; 28 - стрингерный угольник судна; 29 - фальшборт

    Поперечный разрез нефтеналивного судна
    3275
    1 - стрингерный угольник судна; 2 - рамный шпангоут судна; 3 - продольная переборка корпуса судна; 4 - доковая стойка переборки судна; 5 - карлингс; 6 - рамный бимс; 7 - поперечная переборка корпуса судна; 8 - стойка переборки судна; 9 - шпангоут судна; 10 - бортовой стрингер судна; 11 - горизонтальная рама переборки судна; 12 - горизонтальный киль судна; 13 - вертикальный киль судна; 14 - флор; 15 - скуловая кница судна; 16 - скуловой пояс наружной обшивки судна; 17 - распорка корпуса судна; 18 - продольная подпалубная балка судна; 19 - ширстрек
    [ ГОСТ 13641-80]

    Тематики

    Обобщающие термины

    • наружная обшивка, второе дно, подкрепляющие их части

    Синонимы

    EN

     

    (эквипотенциальная) рама
    -
    [IEV number 151-13-07]

    EN

    (equipotential) frame
    conductive part of an equipment or installation the electric potential of which is taken as a reference
    NOTE – In many cases, a chassis made of conductive material may be used as an equipotential frame.
    [IEV number 151-13-07]

    FR

    masse (électrique), f
    châssis (équipotentiel), m
    partie conductrice d'un équipement ou d'une installation, dont le potentiel électrique est pris comme référence
    NOTE – Dans de nombreux cas, un châssis réalisé en matériau conducteur peut être utilisé comme masse électrique.
    [IEV number 151-13-07]

    Синонимы

    EN

    DE

    FR

    • châssis équipotentiel, m
    • châssis, m
    • masse électrique, f
    • masse, f

    108. Цикл временного объединения цифровых сигналов электросвязи

    Цикл

    Frame

    Совокупность примыкающих друг к другу интервалов времени, отведенных для передачи цифровых сигналов электросвязи, поступающих от различных источников, в которой каждому из этих сигналов выделен определенный интервал времени, положение которого может быть определено однозначно

    Источник: ГОСТ 22670-77: Сеть связи цифровая интегральная. Термины и определения оригинал документа

    13. Кадр средства отображения информации

    Кадр

    Frame

    Сформированное изображение для одновременного отображения информации на экране средства отображения информации

    Источник: ГОСТ 27833-88: Средства отображения информации. Термины и определения оригинал документа

    3.28 рама (frame): Сборная конструкция сварного или другого типа, на которой установлен шкаф водородного генератора, его оборудование и компоненты, обеспечивающая фиксацию местоположения оборудования, устойчивость и надежность установки.

    Источник: ГОСТ Р 54110-2010: Водородные генераторы на основе технологий переработки топлива. Часть 1. Безопасность оригинал документа

    17. Оправа защитных очков

    Оправа

    D. Fassung

    E. Frame

    Совокупность конструктивных элементов открытых защитных очков для удержания очковых стекол в требуемом при эксплуатации положении

    Источник: ГОСТ 12.4.001-80: Система стандартов безопасности труда. Очки защитные. Термины и определения оригинал документа

    3.3 рама (frame): Рама, обеспечивающая конструктивную опору и воспринимающая нагрузки от массы и внутреннего давления в теплообменнике.

    Источник: ГОСТ Р ИСО 15547-1-2009: Нефтяная и газовая промышленность. Пластинчатые теплообменники. Технические требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > frame

  • 5 turnaround

    ['tɜːnəˌraʊnd]
    1) Общая лексика: время между получением и исполнением (заказа), карусель, оборачиваемость, оборот судна с учётом времени на погрузку и выгрузку, операции с ценными бумагами с расчётом в, поездка или полёт туда и обратно, перелом, поворот на 180 градусов
    2) Компьютерная техника: оборотный
    3) Авиация: пункт возврата
    5) Техника: кольцевое пересечение дорог, межполётная подготовка (МТКК), оборот (подвижного состава), поворотный стол, реверсирование направления передачи (данных), цикл работы (нефтехранилища, нефтеперегонной установки), цикл разработки (изделия)
    6) Строительство: рабочий цикл, площадка для разворота (напр. автомобиля)
    9) Бухгалтерия: сдвиг (напр. в распределении ассигнований)
    11) Дипломатический термин: поворот (в позиции, политических взглядах и т.п.), время между получением и выполнением (заказа и т.п.), изменение
    13) Полиграфия: время, добавляемое на одобрение заказчиком пробных оттисков или печатного материала, цикл обработки (напр. полуфабриката)
    16) Вычислительная техника: реверсирование передачи (по линии), режим "карусель", цикл обработки (задания)
    23) Глоссарий компании Сахалин Энерджи: капитальный ремонт, межремонтный период, (shutdown of facility for repair/inspection or maintenance) межремонтный срок службы (TAR)
    24) Нефтегазовая техника плановая инспекция промыслового оборудования, цикл работы нефтехранилища
    26) Микроэлектроника: цикл создания прибора
    28) ЕБРР: вывод из кризиса, оздоровление (финансовое), радикальное улучшение (финансовое), решительное улучшение (финансовое), санация, санирование (процесс), улучшение (финансовое), финансовая реструктуризация, финансовое оздоровление, экономический подъём, дневной оборот (в торговле ценными бумагами)
    30) Сахалин Р: период ремонта
    31) Сахалин Ю: подготовка к останову/пуску, предпусковые/предостановочные операции (цикл)
    33) Нефтеперерабатывающие заводы: останов, период капитального ремонта установок

    Универсальный англо-русский словарь > turnaround

  • 6 terminal bus

    1. промышленная сеть верхнего уровня

     

    промышленная сеть верхнего уровня
    коммуникационная сеть верхнего уровня
    сеть операторского уровня
    Сеть верхнего уровня АСУ ТП.
    Сеть передачи данных между операторскими станциями, контроллерами и серверами.
    [ http://kazanets.narod.ru/NT_PART2.htm]

    В данной статье речь пойдет о коммуникационных сетях верхнего уровня, входящих в состав АСУ ТП. Их еще называют сетями операторского уровня, ссылаясь на трехуровневую модель распределенных систем управления.

    Сети верхнего уровня служат для передачи данных между контроллерами, серверами и операторскими рабочими станциями. Иногда в состав таких сетей входят дополнительные узлы: центральный сервер архива, сервер промышленных приложений, инженерная станция и т.д. Но это уже опции.

    Какие сети используются на верхнем уровне?
    В отличие от стандартов полевых шин, здесь особого разнообразия нет. Фактически, большинство сетей верхнего уровня, применяемых в современных АСУ ТП, базируется на стандарте Ethernet (IEEE 802.3) или на его более быстрых вариантах Fast Ethernet и Gigabit Ethernet. При этом, как правило, используется полный стек коммуникационных протоколов TCP/IP. В этом плане сети операторского уровня очень похожи на обычные ЛВС, применяемые в офисных приложениях. Широкое промышленное применение сетей Ethernet обусловлено следующими очевидными моментами:

    1.    Промышленные сети верхнего уровня объединяют множество операторских станций и серверов, которые в большинстве случаев представляют собой персональные компьютеры. Стандарт Ethernet отлично подходит для организации подобных ЛВС; для этого необходимо снабдить каждый компьютер лишь сетевым адаптером (NIC, network interface card). Коммуникационные модули Ethernet для промышленных контроллеров просты в изготовлении и легки в конфигурировании. Стоит отметить, что многие современные контроллеры уже имеют встроенные интерфейсы для подключения к сетям Ethernet.

    2.   На рынке существует большой выбор недорого коммуникационного оборудования для сетей Ethernet, в том числе специально адаптированного для промышленного применения.

    3.   Сети Ethernet обладают большой скоростью передачи данных. Например, стандарт Gigabit Ethernet позволяет передавать данные со скоростью до 1 Gb в секунду при использовании витой пары категории 5. Как будет понятно дальше, большая пропускная способность сети становится чрезвычайно важным моментом для промышленных приложений.

    4.   Очень частым требованием является возможность состыковки сети АСУ ТП с локальной сетью завода (или предприятия). Как правило, существующая ЛВС завода базируется на стандарте Ethernet. Использование единого сетевого стандарта позволяет упростить интеграцию АСУ ТП в общую сеть предприятия, что становится особенно ощутимым при реализации и развертывании систем верхнего уровня типа MES (Мanufacturing Еxecution System).

    Однако у промышленных сетей верхнего уровня есть своя специфика, обусловленная условиями промышленного применения. Типичными требованиями, предъявляемыми к таким сетям, являются:

    1.    Большая пропускная способность и скорость передачи данных. Объем трафика напрямую зависит от многих факторов: количества архивируемых и визуализируемых технологических параметров, количества серверов и операторских станций, используемых прикладных приложений и т.д.

    В отличие от полевых сетей жесткого требования детерминированности здесь нет: строго говоря, неважно, сколько времени займет передача сообщения от одного узла к другому – 100 мс или 700 мс (естественно, это не важно, пока находится в разумных пределах). Главное, чтобы сеть в целом могла справляться с общим объемом трафика за определенное время. Наиболее интенсивный трафик идет по участкам сети, соединяющим серверы и операторские станции (клиенты). Это связано с тем, что на операторской станции технологическая информация обновляется в среднем раз в секунду, причем передаваемых технологических параметров может быть несколько тысяч. Но и тут нет жестких временных ограничений: оператор не заметит, если информация будет обновляться, скажем, каждые полторы секунды вместо положенной одной. В то же время если контроллер (с циклом сканирования в 100 мс) столкнется с 500-милисекундной задержкой поступления новых данных от датчика, это может привести к некорректной отработке алгоритмов управления.

    2.    Отказоустойчивость. Достигается, как правило, путем резервирования коммуникационного оборудования и линий связи по схеме 2*N так, что в случае выхода из строя коммутатора или обрыва канала, система управления способна в кратчайшие сроки (не более 1-3 с) локализовать место отказа, выполнить автоматическую перестройку топологии и перенаправить трафик на резервные маршруты. Далее мы более подробно остановимся на схемах обеспечения резервирования.

    3.    Соответствие сетевого оборудования промышленным условиям эксплуатации. Под этим подразумеваются такие немаловажные технические меры, как: защита сетевого оборудования от пыли и влаги; расширенный температурный диапазон эксплуатации; увеличенный цикл жизни; возможность удобного монтажа на DIN-рейку; низковольтное питание с возможностью резервирования; прочные и износостойкие разъемы и коннекторы. По функционалу промышленное сетевое оборудование практически не отличается от офисных аналогов, однако, ввиду специального исполнения, стоит несколько дороже.
     

    4916
    Рис. 1. Промышленные коммутаторы SCALANCE X200 производства Siemens (слева) и LM8TX от Phoenix Contact (справа): монтаж на DIN-рейку; питание от 24 VDC (у SCALANCE X200 возможность резервирования питания); поддержка резервированных сетевых топологий.

    Говоря о промышленных сетях, построенных на базе технологии Ethernet, часто используют термин Industrial Ethernet, намекая тем самым на их промышленное предназначение. Сейчас ведутся обширные дискуссии о выделении Industrial Ethernet в отдельный промышленный стандарт, однако на данный момент Industrial Ethernet – это лишь перечень технических рекомендации по организации сетей в производственных условиях, и является, строго говоря, неформализованным дополнением к спецификации физического уровня стандарта Ethernet.

    Есть и другая точка зрения на то, что такое Industrial Ethernet. Дело в том, что в последнее время разработано множество коммуникационных протоколов, базирующихся на стандарте Ethernet и оптимизированных для передачи критичных ко времени данных. Такие протоколы условно называют протоколами реального времени, имея в виду, что с их помощью можно организовать обмен данными между распределенными приложениями, которые критичны ко времени выполнения и требуют четкой временной синхронизации. Конечная цель – добиться относительной детерминированности при передаче данных. В качестве примера Industrial Ethernet можно привести:

    1.    Profinet;
    2.    EtherCAT;
    3.    Ethernet Powerlink;
    4.    Ether/IP.

    Эти протоколы в различной степени модифицируют стандартный стек TCP/IP, добавляя в него новые алгоритмы сетевого обмена, диагностические функции, методы самокорректировки и функции синхронизации, оставляя при этом канальный и физический уровни Ethernet неизменными. Это позволяет использовать новые протоколы передачи данных в существующих сетях Ethernet с использованием стандартного коммуникационного оборудования.

    Теперь рассмотрим конкретные конфигурации сетей операторского уровня.
    На рисунке 2 показана самая простая – базовая конфигурация. Отказ любого коммутатора или обрыв канала связи ( link) ведет к нарушению целостности всей системы. Единичная точка отказа изображена на рисунке красным крестиком.

    4917
    Рис. 2. Нерезервированная конфигурация сети верхнего уровня

    Такая простая конфигурация подходит лишь для систем управления, внедряемых на некритичных участках производства (водоподготовка для каких-нибудь водяных контуров или, например, приемка молока на молочном заводе). Для более ответственных технологических участков такое решение явно неудовлетворительно.

    На рисунке 3 показана отказоустойчивая конфигурация с полным резервированием. Каждый канал связи и сетевой компонент резервируется. Обратите внимание, сколько отказов переносит система прежде, чем теряется коммуникация с одной рабочей станцией оператора. Но даже это не выводит систему из строя, так как остается в действии вторая, страхующая рабочая станция.

    4918
    Рис. 3. Полностью резервированная конфигурация сети верхнего уровня

    Резервирование неизбежно ведет к возникновению петлевидных участков сети – замкнутых маршрутов. Стандарт Ethernet, строго говоря, не допускает петлевидных топологий, так как это может привести к зацикливанию пакетов особенно при широковещательной рассылке. Но и из этой ситуации есть выход. Современные коммутаторы, как правило, поддерживают дополнительный прокол Spanning Tree Protocol (STP, IEEE 802.1d), который позволяет создавать петлевидные маршруты в сетях Ethernet. Постоянно анализируя конфигурацию сети, STP автоматически выстраивает древовидную топологию, переводя избыточные коммуникационные линии в резерв. В случае нарушения целостности построенной таким образом сети (обрыв связи, например), STP в считанные секунды включает в работу необходимые резервные линии, восстанавливая древовидную структуры сети. Примечательно то, что этот протокол не требует первичной настройки и работает автоматически. Есть и более мощная разновидность данного протокола Rapid Spanning Tree Protocol (RSTP, IEEE 802.1w), позволяющая снизить время перестройки сети вплоть до нескольких миллисекунд. Протоколы STP и RSTP позволяют создавать произвольное количество избыточных линий связи и являются обязательным функционалом для промышленных коммутаторов, применяемых в резервированных сетях.

    На рисунке 4 изображена резервированная конфигурация сети верхнего уровня, содержащая оптоволоконное кольцо для организации связи между контроллерами и серверами. Иногда это кольцо дублируется, что придает системе дополнительную отказоустойчивость.

    4919
    Рис. 4. Резервированная конфигурация сети на основе оптоволоконного кольца

    Мы рассмотрели наиболее типичные схемы построения сетей, применяемых в промышленности. Вместе с тем следует заметить, что универсальных конфигураций сетей попросту не существует: в каждом конкретном случае проектировщик вырабатывает подходящее техническое решение исходя из поставленной задачи и условий применения.

    [ http://kazanets.narod.ru/NT_PART2.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > terminal bus

  • 7 transmission

    1. n сообщение
    2. n пересылка
    3. n перевод
    4. n перенос; передача

    mosquitoes are the only means of transmission of malaria — комары — единственные переносчики малярии

    5. n прохождение; распространение

    neutron transmission, transmission of neutronsраспространение нейтронов

    6. n пропускание
    7. n тех. передача
    8. n тех. коробка передач
    9. n тех. трансмиссия; привод
    Синонимический ряд:
    1. broadcast (noun) broadcast; ham radio hookup; microwaves; radio broadcast; radio waves; simulcast; telecast; television broadcasting; transmitter frequency
    2. mechanism transferring power (noun) automatic transmission; drive train; five-speed; four-speed; gear box; gear shift; mechanism transferring power; planetary gears; stick shift
    3. transference (noun) carrying across; conveyance; delivery; transfer; transferal; transference; transmittal; transmitting; transplantation

    English-Russian base dictionary > transmission

  • 8 SDLC

    1. software development life cycle - цикл разработки средств программного обеспечения;
    2. synchronous data link communications system - система связи синхронной передачи данных;
    3. synchronous data link control - синхронная система управления линиями передачи данных; синхронное управление каналом передачи данных; синхронное управление передачей данных;
    4. system development and life cycle - разработка системы и жизненного цикла

    Англо-русский словарь технических аббревиатур > SDLC

  • 9 loop

    1) петля; рамка; виток; контур
    5) цикл ( программы или графа) || организовывать цикл или циклы ( в программе); обладать циклом или циклами ( о графе)
    7) замкнутая (электрическая или магнитная) цепь || замыкать (электрическую или магнитную) цепь
    8) (замкнутая) система (напр. автоматического управления)
    9) кольцевая линия ( связи); кольцевой канал ( передачи данных); тлф шлейф || использовать кольцевую линию ( связи), кольцевой канал ( передачи данных) или шлейф
    11) тлв записывать или перезаписывать звук ( при монтаже фильма)
    12) петля || образовывать петлю или петли; придавать форму петли
    13) петлять; осуществлять петлеобразное движение
    14) вчт звуковая петля ( в сэмплерах)
    - asymmetrical hysteresis loop
    - asymmetric digital subscriber loop
    - asynchronous digital subscriber loop
    - automatic frequency control loop
    - B-H loop
    - biased hysteresis loop
    - bubble storage loop
    - capacitance loop
    - closed loop
    - cold loop
    - control loop
    - Costas loop
    - counting loop
    - coupling loop
    - cross-fade loop
    - current loop
    - D-E loop
    - decision-feedback loop
    - delay-lock loop
    - delay-lock tracking loop
    - dielectric-hysteresis loop
    - digital subscriber loop
    - dislocation loop
    - do loop
    - do-while loop
    - driving loop
    - dynamic loop
    - embedded loop
    - empty loop
    - endless loop
    - Euler loop
    - Eulerian loop
    - extrinsic hysteresis loop
    - feedback loop
    - flux transfer loop
    - for loop
    - frequency-locked loop
    - ground loop
    - group loop
    - Hamilton loop
    - Hamiltonian loop
    - hot loop
    - hysteresis loop of maximum permeability cycle
    - incremental hysteresis loop
    - infinite loop
    - infinite recursive loop
    - inner loop
    - intrinsic hysteresis loop
    - line loop
    - local loop
    - local hysteresis loop
    - magnetic loop
    - magnetic-hysteresis loop
    - magnetic induction hysteresis loop
    - magnetization hysteresis loop
    - main loop
    - major loop
    - major hysteresis loop
    - metastable persistent-current loop
    - minor loop
    - minor hysteresis loop
    - multiturn loop
    - nested loop
    - Murray loop
    - open loop
    - open-wire loop
    - oscillating loop
    - overdamping loop
    - paging loop
    - partial-dislocation loop
    - perminvar-like hysteresis loop
    - phase-comparison loop
    - phase-correcting loop
    - point-defect loop
    - polygonal current loop
    - polynomial loop
    - post-flare loop
    - program loop
    - quantizing loop
    - quantizing inductance loop
    - Rayleigh hysteresis loop
    - recoil loop
    - rectangular hysteresis loop
    - remote loop
    - repeat-until loop
    - resource loop
    - saturation hysteresis loop
    - simple loop
    - single-line digital subscriber loop
    - sound loop
    - square hysteresis loop
    - static hysteresis loop
    - stop loop
    - subscriber loop
    - symmetrical hysteresis loop
    - tape loop
    - telephone loop
    - tristable hysteresis loop
    - two-dimensional magnetic loop
    - uncontrolled loop
    - underdamping loop
    - video intermediate-frequency phase-locked-loop
    - voltage loop
    - wait loop
    - while loop

    English-Russian electronics dictionary > loop

  • 10 loop

    1) петля; рамка; виток; контур
    5) цикл ( программы или графа) || организовывать цикл или циклы ( в программе); обладать циклом или циклами ( о графе)
    7) замкнутая (электрическая или магнитная) цепь || замыкать (электрическую или магнитную) цепь
    8) (замкнутая) система (напр. автоматического управления)
    9) кольцевая линия ( связи); кольцевой канал ( передачи данных); тлф. шлейф || использовать кольцевую линию ( связи), кольцевой канал ( передачи данных) или шлейф
    11) тлв. записывать или перезаписывать звук ( при монтаже фильма)
    12) петля || образовывать петлю или петли; придавать форму петли
    13) петлять; осуществлять петлеобразное движение
    14) вчт. звуковая петля ( в сэмплерах)
    - analog phase-locked loop
    - articulatory loop
    - asymmetric digital subscriber loop
    - asymmetrical hysteresis loop
    - asynchronous digital subscriber loop
    - automatic frequency control loop
    - B-H loop
    - biased hysteresis loop
    - bubble storage loop
    - capacitance loop
    - closed loop
    - cold loop
    - control loop
    - Costas loop
    - counting loop
    - coupling loop
    - cross-fade loop
    - current loop
    - D-E loop
    - decision-feedback loop
    - delay-lock loop
    - delay-lock tracking loop
    - dielectric-hysteresis loop
    - digital adapter subscriber loop
    - digital phase-locked loop
    - digital subscriber loop
    - dislocation loop
    - do loop
    - do-while loop
    - driving loop
    - dynamic loop
    - embedded loop
    - empty loop
    - endless loop
    - Euler loop
    - Eulerian loop
    - extrinsic hysteresis loop
    - feedback control loop
    - feedback loop
    - ferroelectric hysteresis loop
    - fiber channel arbitrated loop
    - flare loop
    - flux transfer loop
    - for loop
    - frequency-locked loop
    - ground loop
    - group loop
    - Hamilton loop
    - Hamiltonian loop
    - hot loop
    - hybrid phase-locked loop
    - hysteresis loop of maximum permeability cycle
    - hysteresis loop
    - incremental hysteresis loop
    - infinite loop
    - infinite recursive loop
    - inner loop
    - intrinsic hysteresis loop
    - line loop
    - local hysteresis loop
    - local loop
    - magnetic induction hysteresis loop
    - magnetic loop
    - magnetic-hysteresis loop
    - magnetization hysteresis loop
    - main loop
    - major hysteresis loop
    - major loop
    - metastable persistent-current loop
    - minor hysteresis loop
    - minor loop
    - multiturn loop
    - Murray loop
    - nested loop
    - open loop
    - open-wire loop
    - oscillating loop
    - overdamping loop
    - paging loop
    - partial-dislocation loop
    - perminvar-like hysteresis loop
    - phase-comparison loop
    - phase-correcting loop
    - phase-locked loop
    - pickup loop
    - point-defect loop
    - polygonal current loop
    - polynomial loop
    - post-flare loop
    - program loop
    - quantizing inductance loop
    - quantizing loop
    - Rayleigh hysteresis loop
    - recoil loop
    - rectangular hysteresis loop
    - remote loop
    - repeat-until loop
    - resource loop
    - saturation hysteresis loop
    - simple loop
    - single-line digital subscriber loop
    - sound loop
    - square hysteresis loop
    - static hysteresis loop
    - stop loop
    - subscriber loop
    - symmetrical hysteresis loop
    - tape loop
    - telephone loop
    - tristable hysteresis loop
    - two-dimensional magnetic loop
    - uncontrolled loop
    - underdamping loop
    - video intermediate-frequency phase-locked loop
    - voltage loop
    - wait loop
    - while loop
    - wireless local loop

    The New English-Russian Dictionary of Radio-electronics > loop

  • 11 transmission

    [trænz'mɪʃ(ə)n]
    2) Компьютерная техника: цикл передачи
    4) Морской термин: передача энергии
    5) Медицина: просвечивание
    6) Военный термин: трансмиссия (напр. танка), св передача, силовая передача
    9) Юридический термин: дальнейшая отсылка, отсылка к праву третьей страны (в коллизионном праве), передача дела в другую инстанцию, (пере)уступка (прав, имущества), переуступка (прав, имущества)
    10) Лесоводство: (e.g. of light) пропускание
    11) Металлургия: пропускание (напр. излучени), прохождение (напр. частиц)
    14) Вычислительная техника: прохождение (напр. сигнала)
    16) Связь: отправка
    17) Метрология: прохождение (частиц)
    18) Экология: перенос
    19) Деловая лексика: передача сообщения
    22) Микроэлектроника: трансмиссионный
    23) Полимеры: пропускание (напр, света, излучения)
    24) Робототехника: передача (данных), прохождение (сигнала)
    25) юр.Н.П. наследственная трансмиссия (as in civil law countries), трансмиссия (international law)
    27) Макаров: действующий в проходящем свете, действующий в проходящих лучах, передача (в механике), коэффициент пропускания (в процентах), передача (вид излучения), пропускание (излучения), передача (информации, излучения), передача (механизм передачи движения), передача (напр. информации), просвечивающий (напр. о микроскопе), пропускание (напр. света), светосила (спектрометра), прохождение (частиц)
    28) Безопасность: передача (сигналов), прохождение (сигналов)
    29) Энергосистемы: передача электроэнергии
    31) Газовые турбины: передача (напр., тепла)

    Универсальный англо-русский словарь > transmission

  • 12 basic frame

    1. основной цикл временного объединения цифровых сигналов электросвязи

     

    основной цикл временного объединения цифровых сигналов электросвязи
    основной цикл
    Цикл временного объединения цифровых сигналов электросвязи, продолжительность которого равна периоду дискретизации сигнала электросвязи.
    [ ГОСТ 22670-77]

    Тематики

    Синонимы

    EN

    113. Основной цикл временного объединения цифровых сигналов электросвязи

    Основной цикл

    Basic frame

    Цикл временного объединения цифровых сигналов электросвязи, продолжительность которого равна периоду дискретизации сигнала электросвязи

    Источник: ГОСТ 22670-77: Сеть связи цифровая интегральная. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > basic frame

  • 13 circuit

    ˈsə:kɪt
    1. сущ.
    1) нечто кругообразное а) окружность, круг A rude circuit of stones, of unknown origin. ≈ Неровный круг неизвестного происхождения, выложенный из камней. circuit of the globe б) объезд (своих владений и т.п.), круговая поездка;
    "крюк" to make, take a circuit ≈ пойти обходным путем в) трасса для автогонок;
    автодром The renovated circuit of Hungaroring didn't that much please the drivers. ≈ Обновленная трасса автодрома Хунгароринг не особенно понравилась пилотам. г) электр. цепь, контур;
    схема to break a circuit ≈ разобрать цепь to close a circuit ≈ замкнуть цепь broken circuit detector circuit open circuit circuit closer
    2) нечто, заключенное в границах а) область действий;
    сфера компетенции If you give me leave to meddle in your circuit. ≈ Если ты позволишь мне вторгнуться в сферу твоей деятельности б) область, округа, ареал, местность Syn: area, extent в) округ (элемент административного деления) ;
    район, участок rodeo circuit ≈ родео (поле, где проходят соревнования ковбоев) circuit rider амер.;
    ист. ≈ разъездной священник( объезжающий свою паству) circuit of action
    3) череда а) цикл, совокупность операций;
    комплекс упражнений (для развития какого-л. навыка) lecture circuit ≈ цикл лекций talk-show circuit ≈ цикл программ б) программа выступления в) сеть кинотеатров или других увеселительных заведений, принадлежащая единому владельцу г) кругооборот, круговорот The circuit of changes is completed in the course of a year. ≈ Круговорот изменений завершается за год.
    4) правовые термины а) юр. выездная сессия суда (тж. circuit court) ;
    б) юр. поездка судьи за присяжными в) юр. судебный округ
    5) мед. протекание болезни
    2. гл.
    1) объезжать, совершать объезд (своих владений и т.п.) ;
    оборачиваться The Phenicians circuited the greatest part of the habitable world. ≈ Финикийцы побывали практически во всех местах, пригодных для заселения в этом мире. This comet circuits the sun in about eleven years. ≈ Эта комета совершает свой оборот вокруг солнца примерно за одиннадцать лет.
    2) объезжать (препятствие) ;
    делать крюк, "давать кругаля"
    3) ходить кругами
    4) электр. замыкать кругооборот;
    кругообращение;
    круговращение;
    обращение (вокруг чего-л) - the Moon's * of the Earth обращение Луны вокруг Земли виток( орбиты) ;
    оборот (спутника) (специальное) круговое обращение, циркуляция окружность;
    длина окружности - * of the globe окружность земного шара - the * of the city walls общая длина городских стен объезд;
    обход;
    круговая поездка;
    турне;
    маршрут обхода - the commanding officer made a * of the camp командир сделал обход лагеря - a postman's * постоянный маршрут почтальона - he devoted many hours to the * of Paris он посвятил много часов осмотру Парижа - theatre companies travel over regular *s театральные труппы выезжают в обычные турне - a cocktail * регулярные дневные приемы (в разных посольствах) (юридическое) выездная сессия суда - judges go on * for part of the year часть года судьи проводят на выездных сессиях округ (судебный, церковный) - * court( шотландское) выезной суд присяжных( в крупных городах) ;
    (американизм) выездная сессия окружного суда - * rider (американизм) разъездной священник (объезжающий свою паству) участок, район - * of action район действия область, сфера;
    круг, пределы( деятельности) цикл;
    совокупность операций (американизм) ассоциация спортивных команд - the best club in the * лучший клуб (во) всей ассоциации замкнутое пространство - the * of the world весь мир( техническое) схема;
    сеть;
    система сеть, система - theatre * сеть театров (контролируемых одним лицом или одной компанией) (электротехника) (радиотехника) цепь, контур - short * короткое замыкание - dead * разомкнутый контур;
    нерадиоактивный контур - open * незамкнутый контур - closed * television телевидение по замкнутому каналу схема линия связи;
    сеть - to allocate *s выделять линии связи (авиация) круговой полет петля( дорожная) объезд - to fetch * сделать объезд;
    дать крюку, пойти кружным путем (математика) замкнутая кривая;
    контур (компьютерное) (двусторонний) канал связи - switched * коммутируемая линия;
    коммутируемый канал (электронная) схема обходить( вокруг) ;
    объезжать - to * the globe объехать вокруг земного шара совершать круг;
    вращаться, вертеться - comets *ing the Sun кометы, враащающиеся вокруг Солнца active ~ вчт. активная цепь add ~ вчт. схема сложения addressing ~ вчт. схема выборки адреса alarm ~ вчт. цепь аварийной сигнализации anticoincide ~ вчт. схема несовпадения both-way ~ вчт. дуплексный канал ~ эл. цепь, контур;
    схема;
    broken( или open) circuit разомкнутая цепь;
    detector circuit детекторная схема carry ~ вчт. цепь переноса cascade trigger ~ каскадная триггерная схема character selection ~ вчт. схема выборки знака check ~ вчт. цепь контроля checking ~ вчт. цепь контроля checking ~ вчт. цепь проверки circuit барристеры ~ юр. выездная сессия суда (тж. circuit court) ~ выездная сессия суда ~ выездная судебная сессия ~ длина окружности;
    circuit of the globe окружность земного шара ~ канал связи ~ контур ~ вчт. контур ~ круг ~ кругооборот ~ линия связи ~ область ~ обходить вокруг;
    совершать круг;
    вращаться ~ объезд, круговая поездка;
    to make (или to take) a circuit пойти обходным путем ~ округ (судебный, церковный и т. п.) ;
    участок, район;
    circuit of action район действия ~ окружность ~ пределы деятельности ~ ряд зрелищных предприятий под одним управлением ~ судебный округ ~ сфера ~ схема ~ вчт. схема ~ эл. цепь, контур;
    схема;
    broken (или open) circuit разомкнутая цепь;
    detector circuit детекторная схема ~ цепь ~ вчт. цепь ~ цикл, совокупность операций ~ вчт. цикл ~ attr.: ~ rider амер. ист. священник ~ округ (судебный, церковный и т. п.) ;
    участок, район;
    circuit of action район действия ~ длина окружности;
    circuit of the globe окружность земного шара ~ attr.: ~ rider амер. ист. священник clocked ~ вчт. тактируемая схема commutation ~ вчт. цепь связи comparator ~ вчт. схема сравнения complex fuction ~ сложная функциональная схема computer ~ вчт. схема вычислительной машины computer test ~ схема контроля вычислительной машины control ~ вчт. схема управления correcting ~ вчт. корректирующая схема counter ~ вчт. счетная схема coupling ~ вчт. цепь связи cycle ~ вчт. схема пробуксовки data ~ канал передачи данных dedicated ~ вчт. закрепленный канал deenergizing ~ вчт. цепь отключения deflection ~ вчт. схема отклонения ~ эл. цепь, контур;
    схема;
    broken (или open) circuit разомкнутая цепь;
    detector circuit детекторная схема direct-current ~ вчт. потенциальная схема discrete wired ~ схема с навесным монтажом display ~ вчт. схема индикации dividing ~ вчт. схема деления doubling ~ вчт. схема удвоения duplex ~ вчт. дуплексный канал eccles-jordan ~ вчт. триггер either-way ~ вчт. полудуплексный канал equality ~ вчт. схема равенства etched ~ вчт. печатная схема except ~ вчт. схема запрета fault-free ~ вчт. исправная схема faulty ~ вчт. неисправная схема feedback ~ вчт. схема обратной связи film integrated ~ вчт. пленочная ИС flexible ~ вчт. гибкая схема frame-grounding ~ вчт. цепь заземления корпуса full-duplex ~ вчт. дуплексный канал grounded base ~ схема с общей базой grounded collector ~ схема с общим коллектором grounded emmitter ~ схема с общим эмиттером half-duplex ~ вчт. полудуплексный канал hardware ~ вчт. жестко смонтированная схема holding ~ вчт. схема блокировки imbedded ~ вчт. внутренняя схема inhibit ~ вчт. схема запрета integrated ~ вчт. интегральная схема lag-lead ~ вчт. стабилизирующая схема laminar ~ вчт. ламинарная схема large-scale integration ~ большая интегральная схема latch ~ вчт. схема типа защелка lead-lag ~ вчт. стабилизирующая схема leased ~ вчт. арендованный канал leased ~ вчт. арендованный канал связи leased ~ вчт. арендуемая цепь level ~ вчт. потенциальная схема linearity ~ вчт. линеаризующая схема locked pair ~ схема на спаренных элементах lumped ~ вчт. схема с сосредоточенным параметром ~ объезд, круговая поездка;
    to make (или to take) a circuit пойти обходным путем measuring ~ вчт. измерительная схема mixing ~ вчт. сместительная схема multichip integrated ~ многокристаллическая ИС multiple output ~ схема с несколькими выходами multistage ~ вчт. многокаскадная схема network ~ вчт. сложный контур non-self checking ~ вчт. схема без самоконтроля optoelectronic ~ вчт. оптоэлектронная схема passive ~ вчт. пассивная схема phase-comparison ~ вчт. схема сравнения power ~ вчт. силовая цепь power ~ эл. энергетическая сеть power-fail ~ вчт. схема защиты от исчезновения питания printed ~ вчт. печатная схема printed ~ вчт. печатный монтаж priority ~ вчт. схема приоритета propagation ~ вчт. схема продвижения protection ~ вчт. схема защиты redundant ~ вчт. избыточная схема send-request ~ вчт. схема запроса на передачу short ~ эл. короткое замыкание short ~ короткое замыкание shunt-peaking ~ вчт. схема параллельной коррекции simplex ~ вчт. симплексный канал single-level ~ вчт. одноступенчатая схема single-phase ~ вчт. однотактная схема solid-state ~ вчт. полупроводниковая схема stamped ~ вчт. штампованная схема start-stop ~ вчт. стартстопная схема steering ~ вчт. управляющая схема storage ~ вчт. запоминающая схема switched ~ вчт. коммутируемая линия symbolic ~ вчт. мнемосхема telephone ~ телефонный канал time-base ~ вчт. схема развертки toll ~ вчт. магистральная линия trasmitting ~ вчт. передающая схема trunk ~ междугородный канал two-level ~ вчт. двухступенчатая схема two-way ~ вчт. дуплексный канал very-large-scale integration ~ сврхбольшая интегральная схема virtual ~ вчт. виртуальный канал

    Большой англо-русский и русско-английский словарь > circuit

  • 14 DC

    1. confidential document - секретный документ; документ, не подлежащий оглашению; "оглашению не подлежит";
    2. damage control - предотвращение повреждения; устранение повреждения;
    3. data call - вызов данных;
    4. data cell - ячейка хранения данных, магнокард; минимальный элемент данных;
    5. data center - информационный центр, центр сбора и обработки данных;
    6. data channel - канал связи; информационный канал; канал передачи данных;
    7. data code - код данных;
    8. data collection - сбор данных;
    9. data communications - передача данных;
    10. data control - контроль данных; управление данными;
    11. data conversion - преобразование данных;
    12. data counter - счётчик данных;
    13. dead center - мёртвая точка;
    14. decade counter - декадный счётчик;
    15. decanter - отстойник;
    16. decimal classification - десятичная классификация;
    17. define constant - определяющая константа; "задать константу";
    18. degrees Celsius - градусы по шкале Цельсия;
    19. delay circuit - схема задержки; линия задержки; J13;
    20. deposited carbon - осаждённая угольная пленка; угольный электрод с покрытием;
    21. design change - изменение конструкции или проекта;
    22. design completion - завершение проекта;
    23. design contractor - разработчик проекта;
    24. desk calculator - настольный калькулятор;
    25. desk computer - настольная ЭВМ;
    26. desktop conferencing - конференц-связь;
    27. detonating cord - детонирующий шнур;
    28. development characteristics - характеристики разрабатываемого образца;
    29. development coordinator - координатор по программе разработки;
    30. device code - код прибора;
    31. device context - контекст устройства;
    32. device control - управление прибором; управление устройством;
    33. diagnostic center - диагностический центр;
    34. diamond core - керн, полученный при бурении алмазной коронкой;
    35. difficult communications - "связь затруднена"; "плохая слышимость";
    36. digital clock - цифровой датчик времени;
    37. digital code - цифровой код;
    38. digital comparator - цифровой компаратор;
    39. digital computer - цифровая вычислительная машина; ЦВМ;
    40. direct command - непосредственная команда;
    41. direct connection - непосредственное соединение;
    42. direct control - прямое управление;
    43. direct cost - прямые затраты;
    44. direct-coupled - с непосредственным соединением, непосредственно связанный;
    45. direct current - постоянный ток; прямой ток;
    46. direct cycle - прямой цикл;
    47. direction center - центр управления;
    48. directional coupler - направленный ответвитель; блок связи с каналом управления по курсу;
    49. disk controller - контроллер диска;
    50. dispatcher console - пульт диспетчера;
    51. dispersion coefficient - коэффициент рассеивания; коэффициент вариации;
    52. display computer - ЭВМ системы отображения;
    53. display console - дисплейный пульт; пульт отображения данных; пульт с устройством отображения; пульт управления индикационным табло;
    54. distance-controlled - дистанционно управляемый;
    55. distillation column - дистилляционная колонна;
    56. District of Columbia - Округ Колумбия;
    57. document control - контроль технической документации;
    58. Dorr classifier - классификатор Дорра;
    59. double column - в две колонки;
    60. double-concentric - двойной коаксиальный;
    61. double conductor - двойной провод;
    62. double contact - двойной контакт; двухконтактный;
    63. double contact switch - двухполюсный переключатель;
    64. double cotton insulation - двухслойная хлопчатобумажная изоляция;
    65. Dow Corning - химическая фирма "Дау Корнинг";
    66. down converter - понижающий преобразователь;
    67. drain channel - канал дренажа;
    68. drift chamber - дрейфовая камера;
    69. drift correction - коррекция дрейфа;
    70. drill collar - утяжеленная бурильная труба; УБТ;
    71. dual completion - двухпластовая скважина;
    72. dually complete - заканчивать скважину в двух горизонтах;
    73. Duo Cone - диффузорная широкополосная головка громкоговорителя;
    74. duplex circuit - дуплексная схема;
    75. dust collector - пылевая камера; пылесборник; пылеуловитель; фильтр;
    76. dye cell - ячейка с красителем

    Англо-русский словарь технических аббревиатур > DC

  • 15 turnaround

    Англо-русский словарь технических терминов > turnaround

  • 16 satellite data transmission

    The English-Russian dictionary general scientific > satellite data transmission

  • 17 AR

    1. число Архимеда
    2. скорость доступа
    3. сборка и ремонт
    4. реагирование на аварийную сигнализацию
    5. промышленная площадка на ТЭС или АЭС
    6. приреакторный
    7. поглощающий стержень
    8. отчёт о результатах проверки
    9. отношение активаций
    10. оборудование, расположенное на площадке АЭС
    11. автоматическое повторное включение

     

    автоматическое повторное включение
    АПВ

    Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
    [ ГОСТ Р 52565-2006]

    автоматическое повторное включение
    АПВ

    Автоматическое включение аварийно отключившегося элемента электрической сети
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    (автоматическое) повторное включение
    АПВ


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    automatic reclosing
    automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    auto-reclosing
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEC 62271-100, ed. 2.0 (2008-04)]
    auto-reclosing (of a mechanical switching device)
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEV number 441-16-10]

    FR

    réenclenchement automatique
    refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    refermeture automatique
    séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEC 62271-100, ed. 2.0 (2008-04)]
    refermeture automatique (d'un appareil mécanique de connexion)
    séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEV number 441-16-10]

     
    Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает.   АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.

    Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.

    Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
    [ БСЭ]

     

    НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ

    Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
    Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
    Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
    При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
    Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
    На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]

    АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

    3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

    Должно предусматриваться автоматическое повторное включение:

    1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

    2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

    3) трансформаторов (см. 3.3.26);

    4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

    Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

    Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

    3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

    1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

    2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

    3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

    Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

    Устройства АПВ должны выполняться с автоматическим возвратом.

    3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

    Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

    Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

    3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

    3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

    В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

    3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

    Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

    С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

    3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

    Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

    При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

    В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

    3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

    3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):

    а) быстродействующее ТАПВ (БАПВ)

    б) несинхронное ТАПВ (НАПВ);

    в) ТАПВ с улавливанием синхронизма (ТАПВ УС).

    Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.

    Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.

    3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.

    Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.

    Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.

    3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:

    а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;

    б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;

    в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.

    При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.

    При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.

    3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.

    Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).

    Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.

    Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.

    При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).

    3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.

    3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:

    а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;

    б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;

    в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;

    г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;

    д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.

    Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.

    Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.

    Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.

    3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.

    3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.

    3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:

    1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):

    несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);

    АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).

    Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;

    2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.

    3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.

    Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.

    3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.

    3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.

    3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.

    Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.

    3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.

    Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.

    3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:

    1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);

    2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.

    При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).

    Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.

    3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).

    Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.

    3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.

    3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.

    3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).

    Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.

    3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
    [ ПУЭ]

    Тематики

    Обобщающие термины

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

     

    оборудование, расположенное на площадке АЭС

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    отношение активаций

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    отчёт о результатах проверки
    отчёт о результатах ревизии


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

     

    поглощающий стержень
    (системы управления и защиты ядерного реактора)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    приреакторный

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    промышленная площадка на ТЭС или АЭС

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    реагирование на аварийную сигнализацию

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    сборка и ремонт

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    скорость доступа
    Скорость доступа представляет собой максимальную скорость передачи данных, при которой данные могут поступать в сеть или извлекаться из сети. Она определяется по скорости канала доступа. Скорость в доступе согласуется на определенный период времени на основании двусторонних соглашений между двумя взаимодействующими сетями. Параметр «скорость в доступе» назначается отдельно для каждого оконечного устройства сигнализации. (МСЭ-Т Х.76).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    число Архимеда

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > AR

  • 18 sliding window

    1. следящее окно
    2. сдвигаемое окно измерения

     

    сдвигаемое окно измерения
    (для вычисления среднего значения параметра за определенный интревал времени, т. е. за определенное окно измерения)
    [Интент]

    Тематики

    EN

     

    следящее окно
    Метод надежной передачи данных по ненадежным каналам, при котором отправитель может передавать информацию с максимально возможной скоростью передачи, не ожидая приема квитанций. Все переданные N блоков (N - размер окна) хранятся в памяти передатчика. При получении положительной квитанции подтвержденный кадр удаляется из памяти, а окно сдвигается вправо (на следующий блок), позволяя включить в новый цикл передачи следующий блок, взамен переданного (см. рис. S-11). В спутниковых каналах с большой задержкой сигнала данный метод малоэффективен.
    5184
    Рис. S-11. Метод скользящего окна

    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > sliding window

  • 19 automate programmable à mémoire

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Франко-русский словарь нормативно-технической терминологии > automate programmable à mémoire

  • 20 speicherprogrammierbare Steuerung, f

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Немецко-русский словарь нормативно-технической терминологии > speicherprogrammierbare Steuerung, f

См. также в других словарях:

  • цикл передачи данных — Часть цикла шины, во время которой данные передаются по шине интерфейса. [ГОСТ Р 50304 92 ] Тематики системы для сопряж. радиоэлектр. средств интерфейсные Обобщающие термины режимы и функции обмена EN data cycle …   Справочник технического переводчика

  • цикл передачи данных — 110 цикл передачи данных: Часть цикла шины, во время которой данные передаются по шине интерфейса Источник: ГОСТ Р 50304 92: Системы для сопряжения радиоэлектронных средств интерфейсные. Термины и определения …   Словарь-справочник терминов нормативно-технической документации

  • Цикл передачи данных — 1. Часть цикла шины, во время которой данные передаются по шине интерфейса Употребляется в документе: ГОСТ Р 50304 92 Системы для сопряжения радиоэлектронных средств интерфейсные. Термины и определения …   Телекоммуникационный словарь

  • Цикл — совокупность процессов в системе периодически повторяющихся движений, при которых объект, подвергающийся изменению в определенной последовательности, вновь приходит в исходное положение. Источник: ГОСТ 2846 …   Словарь-справочник терминов нормативно-технической документации

  • цикл временного объединения цифровых сигналов электросвязи — цикл Совокупность примыкающих друг к другу интервалов времени, отведенных для передачи цифровых сигналов электросвязи, поступающих от различных источников, в которой каждому из этих сигналов выделен определенный интервал времени, положение… …   Справочник технического переводчика

  • цикл временного объединения цифровых сигналов данных — цикл временного объединения Совокупность примыкающих друг к другу интервалов времени, отведенных для передачи цифровых сигналов данных, поступающих по нескольким направлениям, в которой каждому из объединяемых по времени сигналов выделен… …   Справочник технического переводчика

  • Цикл временного объединения цифровых сигналов данных — 33. Цикл временного объединения цифровых сигналов данных Цикл временного объединения Е. Frame Совокупность примыкающих друг к другу интервалов времени, отведенных для передачи цифровых сигналов данных, поступающих по нескольким направлениям, в… …   Словарь-справочник терминов нормативно-технической документации

  • Цикл временного объединения — 1. Совокупность примыкающих друг к другу интервалов времени, отведенных для передачи цифровых сигналов данных, поступающих по нескольким направлениям, в которой каждому из объединяемых по времени сигналов выделен однозначно определяемый интервал… …   Телекоммуникационный словарь

  • ГОСТ 17657-79: Передача данных. Термины и определения — Терминология ГОСТ 17657 79: Передача данных. Термины и определения оригинал документа: 78. n кратная ошибка в цифровом сигнале данных n кратная ошибка Е. n fold error Группа из и ошибок в цифровом сигнале данных, при которой ошибочные единичные… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р ИСО/МЭК 19762-3-2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 3. Радиочастотная идентификация (РЧИ) — Терминология ГОСТ Р ИСО/МЭК 19762 3 2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 3. Радиочастотная идентификация (РЧИ) оригинал документа: 05.02.21 абстрактный… …   Словарь-справочник терминов нормативно-технической документации

  • основной цикл временного объединения цифровых сигналов электросвязи — основной цикл Цикл временного объединения цифровых сигналов электросвязи, продолжительность которого равна периоду дискретизации сигнала электросвязи. [ГОСТ 22670 77] Тематики сети передачи данных Синонимы основной цикл EN basic frame …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»